Posts

  අනාගත විද්‍යා ප්‍රබන්ධ විකාශය කොයිබටද? විදුසර 34 වැනි සංවත්සරය වෙනුවන් ලියන ලද ලිපිය.  03.11.2021 දින පලවිය . විද්‍යා සාහිත්‍ය අතර විද්‍යා ප්‍රබන්ධ වලට හිමිවන්නේ ප්‍රමුකස්ථානයක්, විද්‍යා ප්‍රබන්ධ විටෙක ලෝකයේ දිශානතිය වෙනස් කරන්නා වූ සන්ධිස්ථානයක් වන්නට ද පුළුවන. එවන් අවස්ථා ගණනාවක් ඇති බව වත්මන් ලෝකයේ විද්‍යා ප්‍රබන්ධ පදනම් කර ගත් තාක්ෂණය සහ විද්‍යාත්මක සොයා ගැනීම් සහ ඒවා නිසා සිදු වූ පෙරළීන් ගැන විමසා බැලීමේ දී අපට පෙනී යයි. උදාහරණයක් ලෙස ආචාර්ය ආතර් සී   ක්ලාර්ක් මහතාගේ විද්‍යා ප්‍රබන්ධ වල වූ රැහැන් රහිත දුරකථන සහ චන්ද්‍රිකා තාක්ෂණය වැනි තාක්ෂණයන් නිසා ලෝකයේ දිශානතිය වෙනස් කල ආකාරය හොඳින් පැහැදිලි වේ.   විද්‍යා ප්‍රබන්ධ අනාගතය දකින්නා වූ කැඩපතක් වන්නේ රචකයාගේ අනගත දැක්ම අනුව බව අප කවුරුත් හොඳින් දන්නෙමු. ඔහුගේ දැක්ම විකසිත වන්නේ වත්මන් ලෝකය පවතින ආකාරය සහ එහි බලපවත්නා විවිධ මානව ක්‍රියාකාරකම් සහ අවශ්‍යතා මත පදනම්ව බව පෙනී යයි. එනිසා අනාගත විද්‍යා ප්‍රබන්ධවල ස්වරුපය සහ අන්තර්ගතය විය හැක්කේ මොනවාද යන්නට පිළිතුරක් සොයන්නේ නම් ඒ සඳහා ඉහත කී කරුණු මේ සඳහා පදනම විය හැකි බව මෙහිදී පැව
  15.08.2021 උල්කා සහ උල්කෂ්මවල ඛණිජ සංයුතිය උල්කා සහ උල්කාෂ්ම යනු අභ්‍යවකාශ පාෂාණ කැබලි බව දැන් ඔබ ඉතා හොඳින් දන්නවා ඇති.   මෙමෙ භූ විද්‍යාත්මක ද්‍රවයන් සෑදී ඇත්තේ බොහෝ විට ඛණිජ වලින් බව ඔබට වැටහේවි. ඛණිජ යනු ඝන රසායනිකයන් බවත් ඒවාට කදිම ස්ඵටිකරූපි සොබාවයක් ඇති බවත් භූ විද්‍යාව හදාරන ඔබ වටහා ගත යුතුය. උල්කා ඛණිජ සංයුතිය රඳා පවතින්නේ ඒවායේ මුල් ද්‍රව්‍ය එනම් ග්‍රහකවල රසායනය මත පමණක් නොවේ. මේවා සැරිසරන විට පවතින පරිසරයේ උෂ්ණත්වය සහ පීඩනය ද මේ සඳහා හේතු වේ. පෘතුවි වායුගෝලයේ විදගෙන මෙලොවට පතිත වන උල්කා බොහොමයක් ඉතා අධික තාපයකට ගොදුරු වේ. එනිසා තාප විපරිතයට භාජනය වි විපරිත පාෂාන්වලට අවේනික ඛණිජ සමුච්චයක් බිහිකරන්නට සමත් වෙයි. එපමණක් නොව ගැටීමේදී ඇතිවන කම්පනයද ඇතිවන තාපයද මේවායේ ඛණිජ සමුච්චය තීරණය කරන්නට සමත්වෙයි. මේවනවිට උල්කාෂ්ම හැටදහසක් පමණ සොයාගෙන ඇති අතර ඒවා විශ්ලේෂණයෙන් ඛණිජ වර්ග 470ක් පමණ හඳුනාගෙන ඇත. මෙම ඛණිජ සමුච්චයට විවිධ ඛණිජ වර්ග අයත් වේ. ඒ අතර තනි මුලද්‍රව්‍යය, ලෝහ, සිලිකේට, පොස්පේට,   ඔක්සයිඩ, හයිද්‍රෝ;ක්සයිඩ, කාබයිඩ, සල්ෆයිඩ, සිලිසයිඩ, හේලයිඩ, ටෙලුරයිඩ, ඔක්සලේට, නයිට්
  08.08.2021 විශ්ව භූවේදය උල්කා වර්ෂා උල්කා යනු යමෙකුට ආකාශ පාෂාණ ලෙස වුව හැඳින්විය හැක. සෑම දිනකම උල්කා පතනය වේ. මේ වන විට විද්‍යාඥයින් ගණනය කර ඇති ආකාරයට දිනක දී ටොන් පනහකට (48.5) ආසන්න ප්‍රමාණයක් මෙලොවට පතිත වෙයි. එක දෙක පතිත වෙනවා මෙන්ම වර්ෂාවක් ලෙස බොහෝ ප්‍රමාණයක් වුව පතිත වන අවස්ථා ඇත. එලෙස පතිත වීම් අපටවරින් වර වාර්තා වේ. අපගේ වායුගෝලය හරහා ගමන් කරන විට ඔක්සිජන් සමග ප්‍රතික්‍රියා කරමින් බොහොමයක් උල්කා ගිනි ගෙන දැවී විනාශ වී යයි. එනිසා අතරමගදීම තම ගමන නිම කරමින් උල්කා විනාශ වී යයි. උල්කා වර්ෂා ඇතිවන්නේ බොහෝ විට උල්කා විසිරුණු කලාපයක් හරහා පෘතුවිය ගමන් කරන විටයි. මේවා වල්ගා තරු තම ගමනේදී අත්හරිනු ලැබූ පාෂාණ කැබලි වන අතර බොහෝ විට සාම වසරකම අගෝස්තු මාසයේදී අපට උල්කා වර්ෂාවක් දැක ගැනීමේ වාසනාව හිමි වේ. උල්කා වර්ෂා මගින් ඇතිකරන බලපෑම කවර ආකාරයේද යන්න මේ වනවිට විද්‍යඥයින් විසින් පර්යේෂණය තුලින් විශ්ලේෂණය කරනා බව වාර්තා වේ. පෘථිවිය තම ගමන් මග මෙන්ම ඒ නිසා ඇති විය හැකි කාලගුණික සහ දේශගුණික බලපෑම ද එනිසාම මෙළොව වෙසෙන ජිවින්ට ඇති විය හැකි බලපෑම ද මේ තුලින්   නිර්ණය කිරීම ඔවුන්ග
 07.08.2021............... උල්කාෂ්මවල ඇරඹුම......තව දුරටත් ... පාෂාණමය පූර්වජ ග්‍රහලෝක තවදුරත් විශාල වෙන්නට හැකියාව ඇත. සමහර අවස්ථාවල දී මෙම සන්චිතවවීම කරන කොට පූර්වජ ග්‍රහයන් තුල අසීමිත ලෙස උෂ්ණත්වය (තාපය) වැඩිවන්නට පටන් ගනී. පාෂාණමය ද්‍රව්‍යයන්ගේ අධික සංචායනය   විටෙක මෙම තාපයෙන් අභ්‍යන්තරය ආරක්ෂා කරන්නට හැකියාව ඇත. තාපය ඇතිකරන්නේ සොබාවිකව පවතින විකිරණශීලි මූල ද්‍රව්‍ය මගින් යැයි පැවසේ. නෙබුයුලාවේ අභ්‍යන්තරයෙන් පැනනගින චුම්භක රශ්මිය ද හිරුගේ චුම්භක රශ්මියද මේ සඳහා හේතු විය හැක බව විදුඥයින් පවසයි. මෙලෙස ඉහල යන උෂ්ණත්වය මෙම පුර්වජ ග්‍රාහකයන් සෑදී ඇති ග්‍රහක බීජයන් විපරිතකරණයට ලක් කරන්නට සමත් වෙයි. එනිසා මෙම ග්‍රහක බීජ ප්‍රති ස්ඵටිකිකරණයට ලක් වී විශාල ස්ඵටික ද ප්‍රතිඛනිජකරණයට ලක්ව නව ඛණිජ බිහිකරන්නට ද හේතු වෙයි. මෙම ක්‍රියාවලිය උල්කාවල රසායනය සමව පතුරවන්නට හේතු වෙයි. එනිසා මේවා සමජාතී උල්කා හෝ උල්කාෂ්ම ලෙස හදුන්වන්නට හැකිය. තාපයේ උච්චත්වයට පත් වීම පුර්වජ ග්‍රහයන් තුල තිබෙන පාෂාණමය ද්‍රව්‍යයන් සපුරා උනුකරන්නට සමත් වෙයි. එනිසා තැනින් තැන ලෝපාත්රලය බිහි වෙයි. මේවායේ තිබෙන බිජු ඛණිකා මෙන
  03.08.2021 උල්කාෂ්මවල ඇරඹුම අපගේ සුර්යයග්‍රහ මණ්ඩලය ආරම්භ වන්නේ විශ්වය ආරම්භ වී බොහෝ කලකට පසුවය. වසර බිලියන 4.6 කට පමණ පසු අභ්‍යවකාශයේ වූ දූවිලි සහ වායු වලාවක් සංකෝචනය වීමෙන් අපගේ සුර්යයා ඇතුළු ප්‍රමුඛ ග්‍රහ මණ්ඩලය බිහි වූ බව විද්‍යඥයින්ගේ පිළිගැනීමයි. මෙවන් වූ දුවිලි සහ වායු වලාවන් සෙමෙන්   කැරකැවෙමින් පැවතීම එය පැතලි තැටියක් ලෙස අවකාශයේ සකස් කරන්නට හේතු වේ. මෙවන් වූ ව්‍යුහයක් සුර්යය නෙබුයුලාවක් ලෙස හැඳින්වේ. නෙබුයුලාව මධ්‍යයට මෙම දුවිලි සහ වායු වලාවන් සංකේන්ද්‍රණය වීමෙන් තැනින් තැන් ග්‍රහලෝක බිහිකරන්නට සමත් වූ බවත් මාධ්‍යයට එක් වූ හයිද්‍රජන්   වායුව ඒකරාශී වීමෙන් සුර්යයා බිහිකරයි. ක්‍රමයෙන් වැඩිදියුණුවන නෙබුයුලාවේ දුවිලි සහ වායු වලාවන් මගින් මුලින්ම දූවිලිබෝල ඇතිකරන්නට සමත් වේ. මෙම දුවිලි බෝල ලිහිල් ලෙස දුවිලි සහ වායු අංශුන් රඳවා ගනී. නෙබුයුලාවේ සමහර කලාප වල පවතින් මෙම දූවිලිබෝල අධික ලෙස රත්වන්නට පටන් ගනී. එනිසා බොහෝ දේ උණුවීමකට ලක්වන අතර ලෝදිය වැනි ද්‍රවයක් ඇතිකරන්නට සමත් වෙයි. ඒ තුල සිලිකේටයන් ද යකඩ සහ නිකල් වැනි ලෝහ ද අඩංගු වේ. මෙම ද්‍රව්‍ය ක්ෂණිකව සිසිල් වීමකට ලක්වන නිසා
  විශ්ව භූ වේදය විශ්වයේ සැරිසරන උල්කා සහ උල්කාෂ්ම අභ්‍යවකාශයේ සැරිසරන වල්ගාතරුවක හෝ ග්‍රහකයක හෝ උල්කාපාතයක කැබලි උල්කා ලෙස හැඳින්විය හැක. ඝන වස්තූන් වන මේවා පාෂාණමය හෝ ලෝහමය හෝ ඒවායේ මිශ්‍රණයක් ලෙස හෝ පැවතිය හැක. පිටත අභ්‍යවකාශයේ සැරිසරන උල්කා කැබලි යම් කිසි ග්‍රහලෝකයක වායුගෝලයට ඇතුල් වී යෙදෙන ගමනේ දී ලබන අනේක විධි වධ වේදනා හමු වේ ඉතිරිවන දේහය ග්‍රහලෝකයේ මතුපිටට ඇදවැටුන පසු උල්කාෂ්මයක් බවට පත්වන බව පැවසේ. මේවායේ ප්‍රමාණය විවිධ විය හැක. වායුගෝලයේ හරහා ගමන් කිරීමේදී ඇතිවන ඝර්ෂණය ද වායුගෝලීය පීඩනය ද විවිධ වායුන් ගේ බලපෑමෙන් ඇතිවන රසායනික ප්‍රතික්‍රියා ද උල්කාෂ්මයට යම් බලපෑමක් ඇතිකරයි. බාහිර පෘෂ්ටයේ ඇතිවන අධික තාපය ඛණිජ සමුච්චය වෙනස්කරන්නට හේතුවන බව පැහැදිළි වේ. බොහොමයක් උල්කා මෙම ගමනේදී සපුරා විනාශවන නිසා භූ මතුපිටට ඇද වැටෙන්න අතලොස්සකි. ගහලෝකයේ මතුපිටට ලඟා වන්නට තරම් විශාල වූ උල්කා පමණක් මෙලස තම ගමන නිම කරයි.   සංයුතිය අනුව උල්කාෂ්ම වර්ග තුනකි.   1.      ලෝහමය (යක්ක ) උල්කාෂ්ම 2.      ශිලාමය ( සෙල්ල) උල්කාෂ්ම 3.      ලෝශිලා (සෙල් යක්ක) උල්කාෂ්ම උල්කාෂ්මයක් හඳුනාගන්නේ කෙසේද ?
ආග්නේය පාෂාණ (Igneous Rocks) හැඳින්වීම ලෝකයේ බහුලවම පැතිරුණ පාෂාණ වර්ගය වන්නේ ආග්නේය පාෂාණ යි. පෘතුවි කබොළත් (Crust) හරයත් (Mantle) නිර්මාණය කරන්නා වූ මූලික පාෂාණ වර්ගය වන්නේ ද ආග්නේය පාෂාණ යි. ආග්නේය පාෂාණ ලොව පවතින ප්‍රථමික පාෂාණ (primary rocks)   ලෙස හැඳින්විය හැක. ආග්නේය පාෂාණ සහ විපරිත පාෂාණ (metamorphic rocks) එකතුව කබොලේ 95 % පමණ නිර්මාණය කරයි. ආග්නේය පාෂාණ ඇතිවන්නේ ද්‍රව බවට පත් වූ පාෂාණ (melted rocks) වලිනි. ලොව පවතින ඕනෑම පාෂාණයක් භූ අභ්‍යන්තරයේ දී අර්ධ ද්‍රව හෝ ද්‍රව බවට පත් වීමේ හැකියාව ඇත්තේය. භූ අභ්‍යන්තරය තුලට කිඳා බසින පාෂාණ භූ අභ්‍යන්තරයේ පවතින අධික තාපය කරන කොටගෙන මෙලස ද්‍රව බවට පත් වීමේ හැකියාව ඇත. මෙලස උණු වූ පාෂාණ ද්‍රවය හඳුන්වන්නේ “ලෝපාතරල” (magma) ලෙසයි. යමහල් විදාරණය (Volcanism) තුලින් භූ මතුපිටට මේ ලෝපාතරලය, සංයුතියේ (composition) සිදුවන වෙනස්කම් මත ලෝදිය (Lava) ලෙස හැඳින්වේ.   ලෝපාතරලය සහ ලෝදිය (Magma and Lava) ඉහත පැවසු ආකාරයට ලෝපාතරලය බිහිවන්නේ භූ අභ්‍යන්තරයේ ඇති පාෂාණ අධික තාපයට සහ පිඩන වෙනස්වීම් වලට ලක් වීම හේතුවෙනි. බොහෝ විට මෙම ක